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Overview

o Due to limitations in directly assimilating microwave
cloudy observations in the rain-bands of hurricanes, a
new technique named Bayesian Monte Carlo
Integration (BMCI) is introduced.

o The BMCI technique is used to retrieve T, g, wind
speed and several other parameters from microwave
radiances.

o These retrievals can be either directly used by
forecasters to evaluate the structure of hurricanes or
be assimilated into NWP models.
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Limitations of direct assimilation of cloudy radiances  §

The relation between the observations (O) and the forward operator (H)
can be expressed as: O = H(X, pp, ps) + €

X state vector, p, parameters such as shape and size distribution of
hydrometers, pg indicates the scattering parameters (e.g., phase function)
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Inaccuracy in the first-guess: the models do not provide a close first
guess for cloud parameters or clouds are often displaced.

Lack of required RT inputs: p; are neither provided by the model nor
fully measurable in real world thus are estimated from limited in-situ
and aircraft measurements.

Simplified RT models: Operational RT models that use a simplified RT
framework, such as spherical hydrometeors, which is not appropriate
at higher microwave frequencies where ice scattering is important.

Assuming Gaussian Errors: DA systems assume Gaussian error
statistics, examined using the departures, but in the case of cloudy
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The BMCI technique can be summarized in three steps:

@ generation of a retrieval database of atmospheric state and cloud
variables using a-priori information. The database should also
include extreme cases as the extrapolation is not allowed.
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The BMCI technique can be summarized in three steps:

@ generation of a retrieval database of atmospheric state and cloud
variables using a-priori information. The database should also
include extreme cases as the extrapolation is not allowed.

@ the atmospheric state and cloud variables are fed into the RT
model to generate the synthetic observations. In addition to the
state variables such as temperature, water vapor, and cloud pro-
files, cloud microphysics and parameterization such as particles’
shape and size distribution are also utilized as input.

@ real measurements along with the generated database are given
to the retrieval package, then the retrieval package will select
the cases which are close to the real measurements and integrate
them according to the Bayes' theorem to give the estimate of
the mean and uncertainty of the state and cloud variables.




BMCI technique

Cumulative Distribution/EOF Generation Process

Microphysics pdfs:
ice particle p(T,IWC,Dme,disp)
liquid cloud p(T,IWC,LWC,Dme)
relative humidity p(RH;T,IWC)

Cloudsat files:
profiles of reflectivity,
lidar cloud fraction,
and ECMWF T & RH

Interpolate profiles to T/RH levels
and hydrometeor layers

Make table of ice/melting microphysics (IWC,Dme, disp,atten)
mean & covariance for each temperature and radar reflectivity cell

94 GHz scattering tables

Simulate radar reflectivity below threshold in
lidar cloudy ice layers and make cloud mask

Generate stochastic hydrometeor profiles for each radar profile:
1) Use reflectivity and temperature profiles with table to generate
ice/melting IWC, Dme, disp & radar attenuation.
2) Use IWC and T to generate liquid cloud LWC and Dme.
3) Use T and IWC to adjust RH if IWC>threshold.

!

Sort T, RH, ice IWC,Dme,disp, liquid LWC,Dme
for each levelllayer to make CDFs

Calculate Gaussian rank covariance matrix
for columns with IWP>threshold
and make EOFs from matrix

CDFs for 7 variables at all levels/layers
and eigenvalues & EOFs

Ice Cloud and Humidity Retrieval

Scattering tables
kdistribution files

Make retrieval database
For each case:
1) Generate T/RH/hydrometeor profiles from
Gaussian random deviates using EOFs/CDFs,
2) Calculate quantites to retrieve from profiles.
3) Perform radiative transfer to simulate instrument
brightness and radar reflectivity.

Retrieval
Observation file Database

Monte Carlo Integration to retrieve
mean and std. dev. over posterior pdf
for each retrieved quantity

Too few
database cases
with 2 < threshold

Retrieved quantities
and error bars

L_,| optimization procedure:
1) Levenberg-Marquardt minimization of cost function

to find most probable state for retrieved quantities.
2) Sample optimal estimation Gaussian posterior pdf
for error bars,

Evans et al., 2012




Retrieval Database
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/|1X)pp(X Likelihood x Pri
Ppost (X]7) = pr(¥1X)pp(X) —~ Posterior — ikelihood x Prior
/Pf()7

o = Marginal Likelihood
%) pp(X)dx &

The retrieved values for atmospheric or cloud state (X) can be computed
by integrating over the posterior pdf:

= /)?ppost(f(b?')dx
o e (719)
(V1K)

The variance (error) of the posterior pdf is calculated as:

02— / (x = £)2Ppost (%17)dx



The BMCI technique

The conditional pdf can be defined using the probability density of the
measured vectors for any given atmospheric state (j channel number):
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Jj=1
o is the noise in the measurements and X now can be calculated as
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We have made a significant progress on enhancing the BMCI retrieval

system and adding new functionalities to the code. Some of the major
enhancements to the code are as follows:

o Adding temperature profile retrieval capability as well as the ocean
skin temperature and near surface wind speed
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Analyzing in situ warm cloud and rain microphysical data from the
Hurricane Research Division (HRD) and generating stochastic profiles
of warm liquid cloud profiles

Adding ERA-Interim profiles of stratospheric temperature and water
vapor matched to CloudSat times and locations to complement the
CloudSat ECMWF-AUX profiles (which only reach 24 km).

Modifying the CDF-EOF algorithm to allow for clear layers using a
hydrometeor masking procedure for ice, rain, and liquid cloud

Modifying the 1D Bayesian retrieval program to input the new
CDF-EOF a priori file and generate consistent profiles of temperature,
relative humidity, and ice particle, raindrop, and cloud droplet size
distribution parameters to use in the Bayesian profile retrievals.
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Beam filling s,
Beam filling was calculated as the difference between the brightness
temperatures weighted according to an elliptical Gaussian beam pattern and
Thbs calculated using the average profiles. The profiles were generated with
5km resolution using stochastic statistics derived from GPM DPR and central
prol '
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Selected Hurricanes NASA

Hurricane Sandy CloudSat oct 25, 2012

18:46:07 (GMT)

overpassed it on October 27, 2012

Hurricane Iselle CloudSat overpassed
the hurricane on August 4, 2014

Hurricane Amanda CloudSat
overpassed Hurricane Amanda on
May 25, 2014

Hurricane Joaquin In an early stage P
of the formation of Hurricane
Joaquin, on September 29, 2015,
CloudSat passed over the center of |
the hurricane in the Caribbean.

Image credit:
cloudsat.atmos.colostate.edu
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ATMS 20140803 retrieved + error cloud water path
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ATMS 20140803 ice water content retrieval + error profile
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BMCI Retrievals

ATMS 20140803 retrieved surface wind speed
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BMCI Retrievals

ATMS 20140803 relative humidity profile
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Top: SkinTemp (left), IWP (right), Bottom: Rain WP (left), Surface Wind Speed (right)
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Correlated observation errors @

Retrieved Uncertainty Correlation Matrices
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Data Assimilation Results - Intensity
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Data Assimilation Results - Track
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Data Assimilation Results - Track and Intensity Error @
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Data Assimilation Results - Track and Intensity Error
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Conclusions

e Conventional data assimilation schemes cannot properly
assimilate satellite radiances in the rainband of tropical cyclones
due to inaccuracy in RT scattering parameters as well as
inaccuracy in the first guess provided by NWP models

@ A new technique is proposed that does not depend on the
minimization of the cost function.

e Preliminary results from BMCI technique are encouraging but
require extensive validation, though validation itself is challenging

@ These retrieved profiles are valuable for both analyzing the
structure of the hurricanes as well as to provide more accurate
initial conditions for the NWP models
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